CONDITIONS NEAR THE ELECTRODE IN A PLASMA
WITH AN ALKALI ADMIXTURE
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An analysis. is made of the effects of certain processes in the interior of the gas and at the
electrode surface on the potential drop near the electrode in a discharge in a dense, slightly
ionized gas. Thermionic emission from the electrode, the Schottky effect, diffusion, and
volume and surface ionization and recombination are taken into account. The analysis is
carried out for a simple discharge-gap geometry: two infinite, plane-parallel electrodes.
Relations are found for the potential drop near the electrode in a two-temperature plasma
as a function of the discharge parameters and emission characteristics of the material.

The calculated results are compared with experiment,

Processes occurring near electrodes in plasma containing an alkali admixture have recently come
under intense study in connection with the development of methods for direct conversion of thermal energy
[1, 2]. To a large extent, this interest results from the study of MHD conversion at small prototype in-
stallations, for which the potential behavior near the electrodes is of considerable importance. There are
other reasons for the interest in these electrode processes: such important considerations as electrode
erosion and the stability of a distributed discharge are closely associated with processes occurring near
the electrodes [3, 4].

We assume that the plasma consists of a mixture of a gas having a high ionization potential, at a quite
high pressure (p, ~1072-10"* abs. atm), and the vapor of an alkali metal (pg ~1 abs. atm), a small part of
which is ionized. We assume the gas parameters and emission characteristics of the electrodes to be known,
and we séek the electrical characteristics of the discharge and the potential drop near the electrodes.

In a dense, slightly ionized gas the motion of charged particles everywhere except within a distance
on the order of the mean free path from the electrodes is governed by diffusion and mobility. The electron
and ion fluxes are described by [5]

fe=nyv,=— (D,Vn; + p'cneE)
fi ‘-: v, = — (DiVni _— [LiniE) (1)

where Dg and D; are the diffusion coefficients, ug, and pj are the mobilities, the indices "e" and "i" refer
to electrons and ions, respectively, and the rest of the notation is standard. The diffusion coefficients and
mobilities are related by the Einstein relations
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The ion temperature is assumed equal to the temperature of the neutral particles and to the electrode
temperature: T;=Tg=Ty.
We write the continuity equations for the plasma components in standard form [6, 7],

V-i,= V-fi:Bnane—ocninE 2)
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where 8 and @ are the ionization and recombination coefficients, and n, is the concentration of impurity
atoms.

System (1), (2) must be supplemented with the Maxwell equations for the electric field and a relation
for the current density:

V-E=Z(n—n), VxE=0
j:ji+je:e(fi_fe} (3)
With the appropriate boundary conditions specified, system (1)-(3) gives a complete description of the

problem if the ionization and recombination coefficients and the dependence of T on the other discharge
parameters are known.

To determine T, and 8 we can use the approximate model of a two-temperature plasma [8, 9], which
is based on the following two assumptions:

1) In the unperturbed plasma* there is an ionization equilibrium at the electron temperature Tg, s0
the charged-particle density can be calculated from the Saha equation
kTe)" i
n2_ = n K (T = ng CXneld oxp (- ’;’%} @)
2} The electron temperature is determined from the energy-balance equation for the electron gas,
written as

L:— = [2k| 8 (:ﬁ) 'Vek] Nesx %k (Tc - Tg) (6 = ellelty o) (5)

Here K(T,) is the Saha equilibrium constant, ¢; is the impurity ionization potential, o is the electrical
conductivity of the plasma, vgy is the frequency of collisions with atoms of species k, 6 is a parameter char-
acterizing the energy loss of electron gas, and the rest of the notation is standard.

Using the assumption that an ionization equilibrium exists at the electron temperature, and using the
arineiple of detailed equilibrium, we can determine from Eq. (2) the ionization coefficient as a function of
the recombination coefficient and the equilibrium constant:

B=aK(T,) =an [0, (6)

Below we assume that for a given impurity species the quantity @ and thus 8 depend on only the elec-
tron temperature. Under these assumptions, the & value can be taken from [6]. A more rigorous approach
to the determination of the ionization and recombination coefficients has been reported elsewhere [7].

We assume that the electron temperature Ty is spatially uniform (for a given current density) be-
cause of the high electronic thermal conductivity, to within a distance from the electron on the order of the
mean free path of the charged particles. Then the diffusion coefficient and mobility Dy and uo are also
constant.

The perturbed-plasma region near the hot (Ty, ~2000°K) electrode in a dense, slightly ionized gas can
be divided into an ambipolar-diffusion region (n, =nj=n) and a space-charge sheath (n;=ng) {10].

In the ambipolar-diffusion region system (1)-(3) can be solved analytically; the solution is

L FLA=N A £ AN e -
fem—"7y " hT T 1y
_ +b6(1—e/0)jpri1—N° 7
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(8)

Here and below the upper sign refers to the negatively charged electrode (the cathode), and the lower sign
corresponds to the anode; the subscript "s" denotes the value of a quantity at the boundary between the
ambipolar-diffusion region and the space-charged sheath, and the coordinate x is reckoned from this
boundary:

*Here "unperturbed plasma" refers to that part of the discharge in which there are no gradients in the
charged-particle densities.

490



jiw = L D" (4 46 (1 4 )0z
8=p‘i/p'ew 9=Te/Tg1 N=n/nex-

The potential change in the ambipolar~diffusion region is

WP [, 1—e/0 . 4 |, (1--0)e 1 1N,
AV = — [i 'li/a ln—m—+( ngV ln( ZNs] (10)

i*

Let us examine solution (7)-(9), We set N=NS in (7), and we assume that the charged-particle density
in the plasma near the electrode surface is small in comparison with that in the unperturbed plasma, so we
have N 2« 1. We thus find that for a specified current density j the charged-particle fluxes in the space-
charged sheath are essentially constant,

_ F AN Fietd (11)
Jes = e =TT = cons
Hi =N +ef A+ 12)
jis = e ~ e = const (

Turning now from the solution in the space-charge sheath, we consider relations (11), (12), which in
this case hold right up to the electrode surface. Since the mechanism for current transport between the
electrode and the plasma depends on the physical properties of the electrode material, on the electrode tem~
perature, and on the conditions near the surface [1], we see that these relations are not meaningful at all
current densities. To determine the range of applicability of these relations, we must analyze the physical
mechanisms for current transport at the electrode surface. We turn briefly to the emission characteristics
of the electrode material.

The emission properties of the electrode material are usually characterized by two parameters: the
Richardson constant A and the work function ¢y,. These parameters are related to the maximum therm-
ionic current density by the Richardson equation,

jeok = AT exp (— %ﬁ) (13)
When there is an accelerating electric field near the electrode surface, the emission current density
increases because of the lowering of the potential barrier (the Schottky effect) and is given by
. . e e’{zEw‘/z ]
Jew = Jew €XP l- (4vee) kT

L

(14)

The ion current from the electrode surface is related to surface ionization [11] and can be calculated
from the Saha-Langmuir equation if the surface properties are known.

However, if the electrode is bounded by a gas containing an alkali vapor, the emission properties of
the surface may be significantly changed, to a degree which depends on the surface coverage by the film
of alkali atoms. Since there has actually been no study of the effect of an alkali vapor on the work function
of an electrode material under conditions approximating those in an MHD installation for the case of various
types of impurities in the gas, we will assume here that the electrode surface is characterized at a given
temperature by certain emission currents jow° and Jiw. to be determined empirically.

Using Egs. (11) and (12) with the specified values of jgw® and jjy, We can determine the current-density
ranges in which solution (7)-(10) is meaningful. From (12) we see that with j > s'iji* (1—NSZ) the ion cur-
rent near the anode changes direction and flows from the anode toward the plasma (and the anode potential
drop rises). However, since the ion current from the anode cannot exceed the value Jjw according to this
theory, Eq. (12) gives us the following limitation on the current density:

i< T8 1o (1——Ns”)< Ty (0 F8) T30 =i (15)

& &

To exceed the value j, we must also take into account processes such as collisional ionization near
the anode and the increase in the ion emission current due to the surface heating. These processes re-
quire an additional expenditure of energy and are related to an increase in the potential drop near the anode,

If, within the framework of diffusion theory, we neglect the Schottky effect, we also find a restriction
on the current density at the cathode: from Eq. (11) we see that for j > j;, (1—NS2) the electron current near

49



the cathode changes direction and flows from the electrode toward the plasma. Using a maximum electron
emission current of jo=jew’, we find from Eq. (11) the following restriction on the current density:

J e U H8) + fo (L = N2 <o (L 4-8) + i = Jy (16)

This type of restriction on the current density near the cathode has been discussed elsewhere [1]. If
jk is to be exceeded, charge carriers must be created near the electrode, through collisional ionization,
surface heating, the Schottky effect, etc. These processes require energy and are related to an increase
in the potential drop near the cathode.

Inequalities (15) and (16} define the current-density range over which the discharge near the electrode
is a distributed discharge; if these inequalities are not satisfied, arcing may occur, and cathode (or anode)
spots may arise. There is an important distinction between the conditions for the existence of cathode and
anode potential drops: according to (15), (16), collisional ionization or any other process which increases
the ion flux is a factor of 1/e¢ more efficient near the anode than near the cathode,

To calculate the characteristics of the ambipolar-diffusion region from (7)-(10) we must determine
the quantity Ng, which depends on both the densities Neyw and Njy, near the electrode surface and on the so-
lution in the space-charge sheath, In turn, New and Njy can be determined if we know the particle fluxes
from the electrode surface, which generally depend on the field intensity Ey, at the electrode surface and
the fluxes in the plasma at the boundary of the sheath, which depend on Ng. Accordingly, Ng, Ngy,» and Nijy
must be determined jointly. If we have NS «1, but Ew is not large, so that we have joy =Jjew®, the problem
can be split into two parts: First, neglecting the term on the order of NS in comparison with unity, we can
determine Ngw and Nijw, and then we can find Ng.

Let us find the limiting values of the charged-particle densities Ngy and Njy in the diffusion approxi-
mation, The total number of charged particles which intersect unit area per unit time in the positive (or
negative) direction in the gas is given by [12]

(17)

8%8

where g(wy,) is the particle distribution function, wyy, is the thermal velocity, vy, is the diffusion velocity,
and m=e or i.

_f (Wi == Vi) 8 (W) dw,,

m

Assuming the charged particles to have Maxwell distribution of diffusion velocities, we find

Fme =" exp [~ ()J+jm[1+®(l/_§’;:‘1)], (18)

where

D (z) = V_ZTES exp (— 1) dt

is the probability integral.

The total number of charged particles emitted by the electrode and intersecting unit area in the posi-
tive (or negative) direction is governed by the emission currents:

fopg = (19)

e

From the charged-particle balance at the surface of each electrode,
fmz fm+—fm_ (20)

we find, using (18) and (19), the charged-particle densities at the electrode surface,

= ’;,"w Nz Yal+ 0]}
_ 1 ims ) 1 . — el peot¥m 21
Z = '——'—2 _'/.n_ (-—_——].m;n wa y ]mm 4 ( )

where j,,. 18 the electron or ion random current in the unperturbed plasma. With j,, 4<im w, we find from
(21) the approximate relation {10]
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To evaluate the conditions in the space-charge sheath we must solve system (1), (3) for the specified
values of j; and j [determined from (11), (12)] and specified values of Ny, and Njy [calculated from Eq.
(21)], specifying as a boundary condition at the outer boundary the condition for matching with the ambipolar-
diffusion region. In general system (1), (3) must be integrated numerically.

There is one important case, however, in which the calculation can be carried out for the electrode
region in a much simpler manner. If the diffusive fluxes of charged particles in the space-charge sheath
are small in comparison with the corresponding random fluxes, the particle distribution near the electrode
differs little from an equilibrium distribution in an electric field, and we can assume*

N.= N,,exp (eV /kT,), N;y= Ny,exp(—eV/kT,) (23)

where V is the electric potential with respect to the electrode surface. At the outer boundary of the sheath
we set Ngg=Njg=Ng and V=Vg, where Vg is the potential change in the sheath; from Egs. (23) we find
e

08 7/8 kT 1\/s 1
Ns = NewNiwy Vs —2ln New ('0 - m) (24)

Combining this last expression for Vg with Eq. (10), we find the following expression for the total po-
tential drop near the electrode, for the case £« 1:

88 A/ 8
kT, " (4 +0)ef 1+NewN'Lw:| 95
AV === [+1 N T O In 2N8 N8 (25)

The quantity Nay, which appears in Eq. (25) depends on the thermionic current density and thus on the
electric field at the electrode surface, so we must in general determine E, in order to calculate AV. A
relation between Eyw and the field intensity E s(Ng ) can be found from Eqs. (3) and (23),

k
Ep=Bp 42l 80N, 4 Nop— (L4 O NN (26)

System (4), (5), (7), (8), (14), (21), (24)-(26) of algebraic and transcendental equations is used to cal-
culate the potential drop near the electrode as a function of the current density, gas parameters, and elec-
trode characteristics.

Using Egs. (21) and (25) we can determine the physical meaning of restrictions (15) and (16): if we
neglect the Schottky effect, we have Ngy, —~0 as j —jk, and the potential drop near the cathode is AV — oo
with j— j, the potential drop near the anode becomes infinite,

Calculation for the electrode region simplifies in the case of an equilibrium plasma (Te= Tg): since
the plasma parameters do not depend on the current density, and we do not need to use Eq. (5), the form of
the other relations in this system simplifies. In particular, Eq. (25) becomes

_ kTg 1 %87 1 4+ (NeypNiw) 2
AV = T[ln.—+ 2/ ln-——J-”———}

New Tiu 2 (NewNiw)v:= (27)

Using Eq. (27) along with Eq. (22), we can find the resistance of the electrode region:

Ry ==& '—-—1 + 111 [ 1 _[_< ieoo]‘wo !IZ:I}
0 {2J,w+ Tiw ' T (2f 0+ 130 @y + h.)) (28)

To carry out a calculation for the electrode region by this procedure we must know the gas parameters
and electrode characteristics. As was mentioned above, the characteristics of an electrode bounded by a
gas containing an alkali admixture may be markedly changed, We will therefore determine these character-
istics from experimental data.

* Analysis shows that Egs. (23) hold under the conditions

zes Tish eokT, \ Y=
Tuhe b Tohs (h:(‘"‘” e) )
ew e Wy . (£+]

where A and A are the electron and ion mean free paths.
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We use the results of [13], which contains the most extensive in-
formation about the experimental conditions, Figure 1 shows the experi-
mental points on the initial region of the current-voltage characteristics
of the gas-filled gap between an electrode and a probe in the immediate
vieinity (~5 mm) of electrode surface, determined during the flow of cur-
rent through argon containing 0.15% potassium at Tg =Ty =1700°K.

If, on the basis of theoretical considerations (AV —x as j— iK), we
assume that there is a bend in the characteristic in the cathode (j > 0) region
at j=jk, we find jew=0.18 A/cm? under these experimental conditions.
Since the ion current from the electrode surface is unknown under these
experimental conditions, the value of Jiw 18 used as a parameter in the
calculations and is determined from the conditions for matching the ex~
perimental and calculated characteristics. The physical constants re-
quired for the calculation (the collision cross sections, etc.) were taken
from the data in [6, 14, 15]. We note that in constructing the current-volt-
age characteristic of a gas-filled gap between an electrode and a probe the
curve calculated from Eq. (25) must be displaced by the magnitude AW of
the contact potential difference for the electrode-plasma-probe system [if
the electrode and probe have identical properties, the characteristic passes
through the origin, and we have AW=AYV (j=0)].

Before comparing the experimental and theoretical data, we note that,
according to [14], the Saha equation with an electron temperature deter-
mined from Eq. (8), with & equal to the energy-loss coefficient for elec-
trons in elastic collisions (6~2), is a good approximation for small sys-
tems only under the conditions ng > 10" em™3 and T, > 3500°K. For large
systems (L ~10 cm) the lower applicability limit of the Saha equation for
T =Te shifts to temperatures on the order of 2300°K. As the temperature
or electron density is reduced, the ionization becomes less than that pre-
dicted by Eqs. (4) and (5) with 6=2, and for sufficiently small systems and
for a sufficiently low electron density, the gas temperature must play a
role in Saha equation (4). Nevertheless, even under these conditions we
can use Eqs. (4) and (5) to calculate Tq and ne«, choosing an effective
loss coefficient § from the condition for matching the calculated and ex-
perimental data. The values of 6 differ for different experimental condi-
tions (from 6~2 to & ~10%). At a low current density (| j[<0.2 A/cm?) un-
der the experimental conditions of [13] (Ty ¥2000°K, ng~3- 102 cm™3), we
would expect the selective heating of electrons to be negligible.

Comparison of experimental and calculated data confirms this con-
clusion, Figure 1 shows the calculated "electrode-probe characteristic”
for a mixture of Ar+0.15% potassium with Jew=0.18 Afem?, jjw=2.5" 1074
A/cm? and T_=1950°K. (Since the experimental gas temperature was mea-
sured within about 1-2%, the value of Tg was chosen for a best fit of the
calculated and experimental curves, with Tg varied over a range of +25°K.)
Curves 1-3 in Fig. 1 correspond to the values 6=2,66, 100, ©. The ex-
perimental points are seen to lie close to the calculated points in the case
b= (Tg= Tg) .

At sufficiently high current densities (] j] > 1 A/em?% Fig. 2) there is
apparently an appreciable selective heating of electrons. The nonequilib-
rium ionization can be inferred from the bend of the current-voltage char-
acteristic toward the j axis; this feature shows that the plasma parameters
depend on the current density (curves 1 and 2 in Fig. 1). We see that the
AV (j) dependence for |j| > 1 A/cm? in Fig. 2 is similar to curve 2 in Fig.1
for | j| > 0.2 A/cm?. However, calculation of the characteristic at a high
current density goes beyond the framework of the diffusion approximation
[5] because of the high electric fields at the electrode (Ey, ~10° V/cm).



Figure 3 illustrates the effect of the ion current j;, from the surface on the form of the characteristic;
curves 1-3 correspond to ion current densities of jj=5" 1073, 2.5- 1074, and 5-107° A/em? From the con-
dition for matching the experimental and calculated characteristics we find j;4,=2.5 - 10~* A/cm? under these
experimental conditions.

To check the theory we carried out an analogous calculation for the case Tg: 1600°C (Fig. 4), deter-
mining jew from the experimental characteristic (jew=0.25 A/ em?), and assuming jiw edual to that found
earlier, jiw=2.5" 10~% A/em?. Curves 1and 2 in Fig. 4 correspond to Tg =1850°K and Tg= 1875°K, respec-~
tively. We see that the experimental and calculated characteristics agree, within the possible experimental
error,

We also calculated the resistance of the electrode region for various surface temperatures. A slight
dependence of jew on the electrode temperature was noted in [13]: as the electrode temperature was varied
over the range 1400-1800°C, the jew value was (on the average) approximately equal to jew=0.1 A/cm? The
actual values were scattered over the range 0.05-0.2 A/cm? as a result of uncontrollable experimental con-
ditions. These values were also used in the calculations. The j;,, value was assumed fixed and equal to the
value jj=2.5" 107* A/em? determined previously, although j; could in general also change.

Results calculated from Eq. (28) are shown in Fig, 5; curve 1 corresponds to the value jow =0.05
A/cm?, and curve 2 corresponds to jey =0.2 A/cm?. Over the range 1600-1800°C the experimental points lie
within the range of the expected scatter., For T,<1600°C, the size of the perturbed-plasma region is com-
parable to the electrode size, so the resistance calculated from Eq. (28) is too high.

In conclusion we will discuss the conditions under which this theory is applicable. If the electron tem-
perature is known (e.g., experimentally) the limitations on the theory are related to the general conditions
for the applicability of diffusion equations with constant coefficients [5] and the possible use of Egs. (23) in
the space-~charge sheath.

We note that Eq. (26), obtained with the help of (23), does not reflect the tendency of the space-charge
sheath to expand (albeit slowly) at high applied voltages, so calcuations carried out for the cathode region
under the condition j > j). yield values of AV which are too low. When the electron temperature is deter-
mined from Eqgs. (4) and (5), restrictions associated with their applicability also hold [14]. In an equilib-
rium plasma the restrictions are less severe. In this case the basic contribution to the potential drop near
an electrode comes from the second term in Eq. (25), and the error associated with the approximate deter-
mination of Ng has only a slight effect on the calculated results.

The authors thank G. A. Lyubimov for interest in the study and for discussion of the results, and B, V.
Parfenov for graciously furnishing the necessary experimental data from [13].
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